Approximation and solution of a general symmetric functional equation
نویسندگان
چکیده
منابع مشابه
Random approximation of a general symmetric equation
In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.
متن کاملrandom approximation of a general symmetric equation
in this paper, we prove the hyers-ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. as a consequence, weobtain some random stability results in the sense of hyers-ulam-rassias.
متن کاملA new Approximation to the solution of the linear matrix equation AXB = C
It is well-known that the matrix equations play a significant role in several applications in science and engineering. There are various approaches either direct methods or iterative methods to evaluate the solution of these equations. In this research article, the homotopy perturbation method (HPM) will employ to deduce the approximated solution of the linear matrix equation in the form AXB=C....
متن کاملEla the Symmetric Minimal Rank Solution of the Matrix Equation Ax = B and the Optimal Approximation∗
By applying the matrix rank method, the set of symmetric matrix solutions with prescribed rank to the matrix equation AX = B is found. An expression is provided for the optimal approximation to the set of the minimal rank solutions.
متن کاملOn a functional equation for symmetric linear operators on $C^{*}$ algebras
Let $A$ be a $C^{*}$ algebra, $T: Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $. We prove that under each of the following conditions, $T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: i) $A$ is a simple $C^{*}$-algebra. ii) $A$ is unital with trivial center and has a faithful trace such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2014
ISSN: 0019-3577
DOI: 10.1016/j.indag.2013.05.003